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The application of mathematics, natural sciences
and engineering to medicine is gaining momentum
as the mutual benefits of this collaboration become
increasingly obvious. This theme issue is intended
to highlight the trend in the case of mathematics.
Specifically, the scope of this theme issue is to give a
general view of the current research in the application
of mathematical methods to medicine, as well as to
show how mathematics can help in such important
aspects as understanding, prediction, treatment and
data processing. To this end, three representative
specialties have been selected: neuroscience,
cardiology and pathology. Concerning the topics,
the 12 research papers and one review included in
this issue cover biofluids, cardiac and virus dynamics,
computational neuroscience, functional magnetic
resonance imaging data processing, neural networks,
optimization of treatment strategies, time-series
analysis and tumour growth. In conclusion, this
theme issue contains a collection of fine contributions
at the intersection of mathematics and medicine,
not as an exercise in applied mathematics but as a
multidisciplinary research effort that interests both
communities and our society in general.

This article is part of the themed issue
‘Mathematical methods in medicine: neuroscience,
cardiology and pathology’.

1. Introduction
The history of mathematics in the biomedical sciences
can be traced back at least to 1798, when Thomas Malthus
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published his famous growth law of the human population [1], modified in 1838 by Pierre-
François Verhulst [2] to account for the limited amount of available resources in reality. The
‘logistic’ growth rate proposed by Verhulst carried over to other models in population dynamics,
e.g. animal dispersal and spatial spread of an advantageous gene, while its discrete-time version
is the epitome of a parametric dynamical system with regular and chaotic behaviours. Further
milestones include (i) Volterra’s prey–predator model to explain the decrease of fish stocks in the
Adriatic Sea after the First World War [3], (ii) Turing’s explanation by means of reaction–diffusion
differential equations of how spatial patterns in morphogen concentrations form [4], and (iii)
the study of swarm behaviour and its connections with self-organization, collective intelligence,
emergent behaviour and evolutionary models [5]. Among the instances directly related to modern
medicine let us mention another three: (a) the transmission models of Sir Ronald Ross for
malaria [6], later extended by Kermack and McKendrick to the so-called susceptible-infected
compartment model, (b) the Hodgkin–Huxley equations for the action potential at a neuron axon,
which marks the beginning of computational neuroscience [7], and (c) the advent of computerized
tomography, made possible by the Radon integral transform.

Nowadays mathematics is being successfully applied to a number of important fields
in medicine including biofluids, cardiovascular diseases, clinical schedules and tests, data
analysis, drug design and discovery, epidemiology, genetics, image processing, immunology,
instrumentation, microbiology, neuroscience, oncology, virology and more. The list of tools
includes virtually the whole of applied mathematics. To cite the most familiar ones: difference
equations and discrete-time dynamical systems, information and coding theory, graph and
network theory, integral transforms, numerical and computational mathematics, ordinary
differential equations and continuous-time dynamical systems, partial differential equations,
stochastic and time-delay differential equations, statistics, probability and time-series analysis. All
this research has contributed to and continues to increasingly contribute both to better understand
medical phenomena and to finding practical ways of action. In the wake of this endeavour,
new branches of applied mathematics have emerged, e.g. biomathematics and computational
neuroscience. But the most important consequence has been the improvement in healthcare and
life quality that results from, say, early and accurate diagnoses, more efficient drugs, control of
epidemics, and biotechnological know-how.

The ultimate reason for the ubiquity of mathematics in modern science is the necessity
of mathematical thinking to understand complex phenomena. The mathematical approach
includes quantification of observations, modelling, classification, optimization, data processing,
analysis, prediction and validation. Eugene Wigner, the great mathematical physicist, spoke
of ‘the unreasonable effectiveness of mathematics in the natural sciences’ [8] to express the
power of the mathematical approach. In turn, it is also true that mathematics owes much of its
inspiration and vigorous development to the natural sciences and, increasingly, also to biology,
psychology, economy, social sciences and medicine. Classical examples are statistics, actuarial
mathematics, stochastic differential equations and time-series analysis, along with biologically
inspired classification, optimization and computation algorithms such as neural networks, genetic
algorithms and DNA computation. As data collection and data processing capabilities advance,
the potential for mathematics to have an impact in the biological and other ‘soft’ sciences
is going to continue to increase. All this underlines the central role that multidisciplinary
collaboration plays in the development of science in general, and of mathematics in
particular.

This having been said, it should be clear that the medical applications of mathematics belong to
a large number of branches. Rather than zooming in on a specific one, we have selected a sample
of distinct contributions in neuroscience, cardiology and pathology to show the possibilities of the
mathematical approach and how it can enrich topics of different nature. These three branches are
not disjoint, nor are their borders sharp from the point of view of applied mathematics. What
really matters for our purposes is that they build the core of an important research activity,
especially by the impact of the results. Finally, let us point out that the application of mathematics
to medicine is going through a time of great scientific interest.
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2. This issue
This theme issue on the applications of mathematics to medicine is composed of six papers
belonging to the area of neuroscience [9–14], three papers belonging to cardiology [15–17] and
four papers belonging to pathology [18–21], totalling 13 papers from collaborations among 55
scientists.

Next, we present briefly the mathematical contents of all these papers. Rather than doing this
one by one, we prefer to collect them (somewhat arbitrarily) according to their mathematical
subject area in order to allow a more general perspective. The reader will find more specific
information in the references of the papers.

(a) Cellular automata
The relation of cellular automata to biology can be recognized already from the name. Indeed,
cellular automata were introduced in the 1940s by Stanislaw Ulam [22] and John von Neumann
[23] as simple models for machine self-reproduction. Two-dimensional binary cellular automata
became very popular in the 1970s, also outside the computing community, thanks to John
Conway’s Game of Life, which was popularized by Martin Gardner in [24]. More recently, the
publication of Stephen Wolfram’s book [25] brought one-dimensional binary cellular automata
to the fore, culminating two decades of work on their properties and classification. From a
formal point of view, cellular automata may be considered discrete-time, continuous (topological)
dynamical systems.

López et al. [21] model the limited nutrient growth of an immunogenic tumour by means
of a hybrid cellular automaton. The model includes four types of cells: healthy cells, tumour
cells, immune effector cells and dead cells. Depending on the immunogenicity of the tumour,
the transient and asymptotic dynamics of the cellular automaton exhibits three main types
of dynamics, which are interestingly closely related with the three phases of the theory of
immunoedition, to wit: elimination, equilibrium and escape. It is shown that the immune system
can keep a tumour dormant for long periods of time but this dormancy is based on a fragile
balance between the mechanisms behind the immune response and the growth of the tumour.
Thus, the authors question the capacity of the cell-mediated immune response to sustain long
periods of dormancy. This study illustrates how an integrated approach, involving numerical
evidences and theoretical reasoning, can enhance our understanding of biologically motivated
models and stimulate new research on possible therapeutic strategies.

(b) Computational fluid dynamics
The application of computational fluid dynamics to medicine is quite natural although highly
nontrivial, mainly for the following two reasons. First, most biofluids (e.g. blood, semen, lymph)
are non-Newtonian, i.e. unlike the more familiar Newtonian fluids such as water, their behaviour
is not described by the Navier–Stokes equation. Second, the boundaries of the vessels and cavities
conveying and containing fluids in the human body are flexible (veins and arteries), time-varying
(heart), porous (brain ventricles) or have a complex geometry (lungs), which makes numerical
modelling even more challenging.

In [20], Giménez et al. extend previous work on the design of ventricular catheters for the
treatment of hydrocephalus, a medical condition characterized by an excess of cerebrospinal fluid
in the brain ventricles. In a series of papers, some of the authors optimized the geometry and
configuration of the catheter holes in order to obtain a uniform flow pattern along the perforated
area. Such catheters are less prone to obstructions caused by the macromolecules and tissues
present in the cerebrospinal fluid than the standard catheters in use. As compared to a general
fluid-mechanical problem, this particular case is simpler because (i) the cerebrospinal fluid is
Newtonian to a high degree of accuracy and (ii) the influence of the ventricle geometry on its
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flow through the catheter may be assumed negligible with the caveat that the catheter has been
correctly placed in the ventricle. Furthermore, the authors assumed constant inlet flow. In this
follow-up paper, the authors take into account the pulsatile nature of the cerebrospinal fluid
owing to the heart beating and blood flow, and quantify the corresponding corrections. This way
they validate their catheter designs under more realistic conditions. As in their previous work, the
authors use OpenFOAM® [26], an off-the-shelf computational tool for fluid dynamics [18], along
with auxiliary meshing and graphical tools.

(c) Data processing
Data processing refers to any method for extracting valuable information from a dataset. At
variance with time-series analysis (see §2g), the data need not be observations of a time-
evolving phenomenon. Data processing is a multidisciplinary field with intersections with
statistics, time-series analysis, machine learning, artificial intelligence and, as we will see
shortly, with statistical physics and algebra (e.g. graph theory) too. Owing to the data deluge
enabled by the new information technologies, data processing (sometimes under the catchy
name of big data analysis) has currently become one of the most active fields of applied
mathematics.

The data analysed by Ezaki et al. [9] are voxels obtained by functional magnetic resonance
imaging of some regions of the brain. The scope is to represent that information in such a way
that alterations in brain dynamics can be easily identified. For this purpose, the authors resort
to the maximum entropy model, a major variant of which is also known as the Ising model
and Boltzmann machine. As a result, the authors map the brain dynamics to the movement of
a particle on an ‘energy landscape’ inferred from the neuroimaging recordings. In particular,
the authors determine the parameter values more efficiently than a conventional gradient
descent method. More generally, the maximum entropy model is a useful method to represent
multivariate data that are repeatedly observed and derive the structure of interaction between
variates.

Lord et al. [11] provide a thorough review of integration and segregation from the perspective
of whole-brain connectnomics. Importantly, they push the boundary from static network
structure to time-varying systems. A wide range of psychiatric and neurophysiological states can
be characterized by the degree to which signals from different brain regions are either coupled
or separated. This review provides an overview of how various physiological states can be
interpreted through whole-brain computational models—and how those computational models
involve either segregation or integration. Moreover, they go on to describe how integration
and segregation may be quantified. They conclude by speculating that such measures are
likely to yield biomarkers or practical therapeutic targets of clinical relevance. They clearly
show that approaching an understanding of whole-brain behaviour from computational and
mathematical models contributes to the emergence of a stratified neuropsychiatry, and potential
for personalized therapeutics.

Clustering is a usual task in statistical data analysis, especially important in information
classification and retrieval, pattern recognition and image processing. Borrowing the definition
from Lorimer et al. [12], clustering is the partitioning of a set of objects into subsets, or clusters,
that express, among themselves and compared to objects not in the cluster, an increased degree of
similarity. As an example, think of the identification of malicious tissue on a positron emission
tomography scan of a part of the body. Lorimer et al. compare and discuss two biologically
motivated clustering methods: the Phenograph approach and the Hebbian Learning Clustering.
Both algorithms represent the data points as nodes of a k-nearest neighbour graph, with distances
encoded as edge weights, and, most importantly, are unbiased with respect to the assumption of
Gaussian data clouds or clusters itself. On the other hand, the selection of the relevant features
of the clusters introduces necessarily bias in the results. In view of their numerical results with
synthetic and natural data, the authors elaborate on the importance of selecting features consistent
with the sought data classification.
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(d) Differential equations/dynamical systems
Ordinary and partial differential equations are ubiquitous in applied mathematics because they
describe time-depending phenomena; a simple example is the demographic evolution given
by the equations of Malthus and Verhulst. In particular cases, differential equations have to
be supplemented to cope with memory effects (integro-differential equations or time-delay
differential equations) and noise (stochastic differential equations). If for convenience time ticks
in a discrete way (e.g. from generation to generation in population dynamics), then one deals with
difference equations, which is a stand-alone branch of mathematics and the formalism underlying
the theory of dynamical systems in discrete time. While the theories of ordinary differential
equations and difference equations (or dynamical systems in continuous and discrete time for
that matter) are well developed and understood, not surprisingly the theory of (nonlinear)
partial differential equations lacks so far a unified approach. This shortcoming is circumvented
in practice with numerical methods; a typical example was considered in §2b: computational
fluid dynamics. Let us note in passing that the discretization of a differential equation via finite
differences produces a difference equation.

In this section, we address the papers on computational neuroscience [14] and on cardiac
dynamics [15]. Other models described also by differential equations will be addressed in §2e,f.
Maslennikov et al. [13], which uses difference equations, is also included in §2e.

The synchronization of neuronal networks plays an important role in brain dynamics, a
typical study case being epilepsy. In this setting, Reimbayev et al. [14] analyse the interplay
between excitatory and inhibitory synaptic connections, and how they combine to create both
synchronized and unsynchronized neural activity. More specifically, they describe a novel
mechanism of synchronization in networks of coupled bursting neurons, based on a combined
electrical and inhibitory coupling, that will certainly contribute to the understanding of the
collective dynamics of oscillating neuronal networks. The results are tested in small networks
and shown to hold in larger ones.

In [15], Boccia et al. deal with low-energy control methods (far field pacing) for defibrillation.
Specifically, they study numerically the unpinning and termination of spiral waves around
an ischemic heterogeneity, modelled as a small circular patch in a two-dimensional sheet of
cardiac tissue, by means of phase I of the so-called Luo–Rudy action potential model. Two
cases are studied and compared: the simplified isotropic medium (in which the extracellular
and intracellular conductivities parallel and transversal to the fibres are set to be equal) and the
realistic anisotropic medium (in which those conductivities are different). As a result, the authors
show that the range of far field pacing resulting in successful termination of pinned spiral waves
is larger in the second case.

(e) Networks
Papers featuring techniques from network science feature prominently in this theme issue.
Network models are, of course, a very natural way to describe the interaction dynamics in a
wide variety of physiological systems. The papers in this issue focus on network approaches to
modelling interaction in neurophysiological settings [10,13] and in disease transmission [18]. The
choice of these applications is quite deliberate because these are instances where the network
structure is intrinsic to the dynamical behaviour of interest.

In the case of [10,13] we see two different studies of emergent behaviour in neurophysiological
models that are highly dependent on the structure of the network itself. Maslennikov et al.
[13] study an adaptive network of spiking neurons. Starting with simple biologically inspired
elements, and a small core network of these elements, they describe a model whereby the
elements respond to stimulus to modify their connectivity. This allows the network of neurons
to create complex responses to particular stimuli. They characterize this structure in terms of a
core network existing within a hypernetwork.
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Conversely, in [10], Li et al. address neuronal avalanches in a spiking neural network model.
Networks of physiologically inspired neurons have been observed to self-organize into a critical
state where the resultant dynamics of the system can exhibit a mixture of ordered and disordered
patterns. Curiously, the critical region which may exhibit strongly ordered performance is narrow
for systems of spiking neurons. In [10], we have a study of this problem from the perspective of a
liquid state machine. They show that the performance of the liquid state machine is optimal when
the neuronal pool is operating at that critical state.

Complex networks appear in a very wide range of applications, and this is demonstrated
within this theme issue with our third contribution from this area. Fu et al. [18] examine
the problem of disease transmission on complex networks. There is now a substantial body
of literature in the area of diseases (and other propagation processes) on complex networks.
The particular contribution of Chen et al. [18] is to consider two competing strains and
to derive analytic expressions for the epidemic threshold and corresponding conditions for
endemic transmission. They extend the probability generating function approach to the case of
(necessarily) pair-wise approximation across the transmission model. Competing virus strains
are, of course, of relevance across a wide range of disease and also treatment.

(f) Optimization
Optimization is a basic task in many areas of mathematics, science and technology. For this reason,
it has been the subject of much interest and labour over the last centuries. As a result, whole
new branches of mathematics such as calculus of variations, convex optimization and operations
research emerged. Nowadays optimization remains a very active research field in which novel
techniques are developed to deal with old and new challenges.

Christodoulides et al. [19] provide an interesting application of classical optimal control theory
for the design of medication and treatment regimes for (in this case) atopic dermatitis. Their paper
is a neat example of how classical applied mathematics (and in this case dynamical systems
theory) can be applied to informed personalized medicine. As with many diseases, a patient’s
response to atopic dermatitis is not constant but behaves as a dynamical system. By characterizing
this system they are able to tune the timing and dosage of their treatment to arrive at an optimal
solution. Their example is a neat one because it relies on fairly simple mathematics to obtain an
elegant solution to a real-world problem.

(g) Time-series analysis
Time-series analysis is a useful tool in the study of time-evolving phenomena whose governing
equations are unknown or too complex to attempt a detailed analysis. In the linear (or statistical)
approach, the usual scope is to find a random process that fits the observations. In nonlinear
time-series analysis, the working hypothesis is that the observations are output by a stationary,
dissipative nonlinear system. The scope this time is to characterize the attractor of the system
by means of dynamical and/or geometrical parameters such as the Lyapunov exponents and a
variety of fractal dimensions. In the case of multivariate time series, a further scope may be the
causal relations (also called coupling or information directions) between pairs of components. See
[27] for a general introduction to nonlinear time-series analysis with applications.

In applications, the scope may actually be more modest. A typical example is the
discrimination of different dynamical states or ‘regimes’ of the system under scrutiny. Think of a
medical analyst who wishes to distinguish in an electroencephalogram of an epileptic patient
the normal health condition from the abnormal condition (epileptic seizure). An observable
that is up to this task is sometimes called a biomarker in medical applications whatever its
mathematical nature. Thus, one can find in the literature biomarkers ranging from the traditional
statistics, several sorts of entropy, the count of some kind of symbols, to even properties of graphs
constructed from the data. Concrete implementations of this strategy can be found in [16,17], as
we explain in the following.
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Given L consecutive (or, more generally, equidistant) data of a time series, one can assign a
symbol to them. In particular, if L > 1 this symbol can be the permutation obtained by ordering
those data according to their size. By repeating this assignment with sliding blocks of data
one trades the original time series for a series of permutations which are aptly called ordinal
patterns and are being used in time-series analysis, ergodic theory and dynamical systems for
a number of purposes [28]. In [16], this symbolization procedure is brought a step further to
construct an associated ordinal network to the data as follows: the L! possible ordinal patterns
are the nodes of the network and a link goes from node A to node B if the ordinal pattern B
follows pattern A in the symbolized series. This technique makes available the power of network
theory to the data analyst. For example, using entropy-like complexity measures defined from
the ordinal network, McCullough et al. [16] are able to discriminate between electrocardiograms
characterized by normal sinus rhythm, ventricular tachycardia and ventricular fibrillation. Other
interesting applications and the numerical issues involved in the analysis are also thoroughly
discussed.

The paper by Porta et al. [17] is related to [16] in that it also uses an entropy-like quantity
(transfer entropy, a popular measure of causality), but this time to assess the strength of cardiac
and sympathetic baroreflex. Causality analysis provides an ideal framework to assess the strength
of the physiological interactions aiming at the maintenance of arterial blood pressure during
an orthostatic challenge in the presence of relevant nonlinear relations and confounding factors
blurring the causal link from sympathetic neural activity to arterial blood pressure (e.g. direct
effect of respiration on both variables). Porta et al. [17] exploit and compare a model-based and
a model-free approach to transfer entropy estimation grounded, respectively, on multivariate
autoregressive model and k-nearest neighbour technique to evaluate the strength of the causal
relation from sympathetic activity to arterial blood pressure and vice versa in a multivariate
framework accounting for heart rate and respiration as covariates.

3. Conclusion
The previous section illustrates the breadth and depth of the mathematical methods currently
applied in medicine, specifically in neuroscience, cardiology and pathology, as reflected in the
contributions of this theme issue. Thus, differential equations model the action potential of
spiking neurons [14], the treatment effect on a pathogenesis [19] or the flow of cerebrospinal fluid
in the ventricular system [20]. It also illustrates nicely how different mathematical subject areas
usually concur in the modelling and analysis of a specific topic. For example, networks are used in
a particular clustering algorithm [12], represent a symbolic time series [16], and are the framework
of an infection spreading model [18].

As for the potential implications of the results reported in this issue, they can be classified in
the following categories:

— better data analysis and diagnoses [9,12,16,17];
— better therapies or instrumentation [15,19–21];
— better understanding of biological processes [10,13,14]; and
— better understanding of medical disorders [11,18].
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